M.Math. IInd year : Commutative Algebra Midsemestral Exam : Instructor : B. Sury September 22, 2022 Answer Q 1 and FIVE MORE questions. Q 1 carries 10 points and all other questions carry 5 points each. Be BRIEF (e.g.: for each part of Q 1, give a solution in 1-2 lines). Maximum Marks 35. In what follows A is a commutative ring with 1 = 0

In what follows, A is a commutative ring with $1 \neq 0$.

Q 1. (10 points)

(a) Simplify $\mathbb{Z}_n \otimes_{\mathbb{Z}} \mathbb{Z}_n$.

(b) Prove that $\mathbb{Q}^{>0}$ is a free abelian group.

(c) Show that A[X] is A-flat.

(d) Prove that A[X] is not a local ring.

(e) Let $a^n = a$ for all $a \in A$. Prove every prime ideal is maximal.

Q 2. Let I be an ideal of A which is a direct summand. Show that I is a principal ideal generated by an idempotent element. Further, in this case, show that every short exact sequence of the form

$$0 \to N \to M \to I \to 0$$

splits.

 \mathbf{Q} 3. Let M be a flat A-module, and suppose

$$0 \to M_1 \to M_0 \to M \to 0$$

is an exact sequence. Show that for any A-module N, the sequence

$$0 \to M_1 \otimes N \to M_0 \otimes N \to M \otimes N \to 0$$

is exact.

Hint. Consider a surjection $f : F \to N$ from F free and tensor the given exact sequence with Ker(f), F, N and apply snake's lemma.

Q 4. If M is finitely generated and $\theta : M \to M$ is a surjection, prove that θ must be injective. Using this, prove that if $A^m \cong A^n$, then m = n.

Q 5. Consider the \mathbb{Z} -module $M = \bigoplus_{n \ge 2} \mathbb{Z}_n$ and consider $S = \mathbb{Z} - \{0\}$. Determine $S^{-1}ann(M)$ and $annS^{-1}M$.

Q 6. Let M, N be A-modules where N is finitely generated, and let J be the Jacobson radical of A. If $f: M \to N$ is a A-homomorphism such that the induced map $\overline{f}: M/JM \to N/JN$ is surjective. Prove that f is surjective. Hint. Think of NAK lemma for a suitable module.

Q 7. If $0 \to M \to A^n \to N \to 0$ is an exact sequence, and Q is any A-module, prove that $Tor_i(M, Q) \cong Tor_i(N, Q)$ for all $i \ge 1$. Hint. Use the long exact sequence for Tor.

Q 8. If A/J is isomorphic to a product of finitely many fields (where J is the Jacobson radical of A), then prove that A has only finitely maximal ideals.

Hint. Think of the Chinese remainder theorem.